Sneutrino Inflation with Asymmetric Dark Matter

Ryosuke Sato (University of Tokyo)

"Sneutrino Inflation with Asymmetric Dark Matter"
N. Haba, S. Matsumoto and RS [arXiv : hep-ph/1101.5679]

Introduction

What is the origin of the baryon asymmetry in the Universe?

What is the origin of the dark matter?

[NASA/WMAP Science Team]

Why the amount of the baryon and the dark matter is closed?

Asymmetric Dark Matter

[Kaplan, Luty and Zurek (2009)]

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DM}} + \mathcal{L}_{int.}$$

 $\mathcal{L}_{int.}$ enforces the (anti-)dark matter have non-zero $\emph{B-L}$ charge.

The <u>dark matter</u> number is generated by non-zero *B-L* number.

Asymmetric Dark Matter

[Kaplan, Luty and Zurek (2009)]

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DM}} + \mathcal{L}_{int.}$$

 \mathcal{L}_{int} enforces the (anti-)dark matter have non-zero $\emph{B-L}$ charge.

The <u>dark matter</u> number is generated by non-zero *B-L* number.

Asymmetric Dark Matter

[Kaplan, Luty and Zurek (2009)]

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DM}} + \mathcal{L}_{nt}$$

 \mathcal{L}_{int} enforces the (anti-)dark matter have non-zero $\emph{B-L}$ charge.

As the temperature of the universe become low, the dark matter number is fixed.

Sneutrino Inflation

[Murayama, Suzuki, Yanagida and Yokoyama (1993)]

MSSM + Right-handed neutrino & sneutrino

$$W = W_{\text{MSSM}} + y_{ij}N_iL_jH_u + \frac{1}{2}M_iN_i^2$$

Right-handed sneutrino with small Yukawa couplings acts as the inflaton!

The see-saw mechanism leads to <u>neutrino mass</u> and <u>mixing</u>.

Decay of Right-handed Sneutrino

$$\tilde{N}_{1} \to \ell^{\dagger} \tilde{H}_{u}^{\dagger} + \tilde{N}_{1}^{-} \to \tilde{\ell}^{\dagger} + \tilde{\ell}^{\dagger}$$

Asymmetric Dark Matter transmits...

B-L to dark matter

Sneutrino inflation leads to....

Inflation
Neutrino mass & mixing
B-L number asymmetry

Can we combine

"Asymmetric Dark Matter" and

"Sneutrino Inflation" successfully?

$$\begin{cases} n_B/s = 8.3 \times 10^{-11} \\ \Omega_{DM}/\Omega_B = 5 \end{cases}$$

Our setup

NMSSM (MSSM+singlet)

- + right-handed neutrino & sneutrino
- + dark matter & anti-dark matter

 $X, ar{X}$: (anti-) Dark matter S: Singlet in NMSSM

$$W = W_{\text{NMSSM}} + \lambda S H_u H_d + \kappa' S X \bar{X}$$

$$+\frac{M}{2}N_i^2 + y_{ij}N_iL_jH_u + \frac{\kappa_i}{2}N_i\bar{X}^2$$

Our setup

NMSSM (MSSM+singlet)

- + right-handed neutrino & sneutrino
- + dark matter & anti-dark matter

 $X, ar{X}$: (anti-) Dark matter S: Singlet in NMSSM

$$W = W_{\text{NMSSM}} + \lambda S H_u H_d + \kappa' S X \bar{X}$$

Dark Matter annihilation

$$+\frac{M}{2}N_i^2 + y_{ij}N_iL_jH_u + \frac{\kappa_i}{2}N_i\bar{X}^2$$

Dark matter production
$$\frac{y_{ij}\kappa_i}{2M}(L_jH_u)\bar{X}^2$$

	X	\bar{X}	S
Z_{4R}	-i	i	1
$U(1)_L$	-1/2	1/2	0

Right-handed sneutrino

$$\ddot{\tilde{N}} + 3H\dot{\tilde{N}} + \Gamma\dot{\tilde{N}} + M^2\tilde{N} = 0$$

$$H^{2} = \frac{8\pi}{3M_{\rm Pl}^{2}} (M^{2}|\tilde{N}|^{2} + |\dot{\tilde{N}}|^{2})$$

$$M = 10^{13} \text{ GeV}$$
 $T_{RH} = 2 \times 10^{10} \text{ GeV}$
 $\epsilon_{BL} = 10^{-7}$
 $\epsilon_{DM} = 0$
 $y_{33} = 0.14$
 $\kappa_3 = 0.70$

550 GeV

 m_X

 $\Omega_{DM}/\Omega_B=5$

N. Haba, S. Matsumoto and RS [arXiv: hep-ph/1101.5679]

Conclusion

The dark matter density today is close to the baryon density. This fact suggests they have a common origin.

We have constructed the model which can realize **inflation** and **appropriate relic abundance** of **baryon** and **dark matter** simultaneously.

Backup

What determines the abundance of Baryon and Dark Matter?

$$\dot{n}_{BL} + 3Hn_{BL} \sim \epsilon_{BL} \Gamma \frac{\rho_N}{M}$$

$$n_{BL} \sim \epsilon_{BL} \Gamma \frac{T_{RH}^4}{M} \times \Gamma^{-1}$$
 $s \sim T_{RH}^3$

$$n_{BL}/s \sim \epsilon_{BL} \frac{T_{RH}}{M}$$

What determines the abundance of Baryon and Dark Matter?

 $yNLH_u + \frac{1}{2}\kappa N\bar{X}^2$

$$\dot{n}_{DM} + 3Hn_{DM} \sim y^2 \kappa^2 \frac{T^3 n_{BL}}{M^2} - \kappa^4 \frac{T^3 n_{DM}}{M^2}$$

Wash-out effect of dark matter is **WEAK**.

$$\Gamma n_{DM} \sim y^2 \kappa^2 \frac{T_{RH}^3 n_{BL}}{M^2}$$

$$n_{DM}/n_{BL} \sim y^2 \kappa^2 \frac{T_{\rm RH} M_{\rm Pl}}{M^2}$$

$$(\Gamma \sim T_{RH}^2/M_{\rm Pl})$$

Wash-out effect of dark matter is **STRONG**.

$$y^2 \kappa^2 n_{BL} \sim \kappa^4 n_{DM}$$

$$n_{DM}/n_{BL} \sim y^2/\kappa^2$$